
Flare: An approach to
routing in Lightning

Network
Pavel Prihodko
Kolya Sakhno

Alexei Ostrovskiy
Slava Zhigulin

Olaoluwa Osuntokun

Lightning network

Routing

How E finds path to D ?

E

D

Routing requirements
• Peer-to-peer network

• Source routing

• Trustlessness

• Anonymity

• Fast payment processing

Routing

http://bitfury.com/content/5-white-papers-research/
whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf

As a solution we came up with algorithm Flare:

Core idea

State of LN can be split in two distinct components:

Slowly changing,
static information

Quickly changing,
dynamic information

• Payment channels,
• Total capacity,

• Status of nodes,
• Distribution of funds,
• Fees for using a channel.

Flare design

Proactive part (on schedule):

• Gather static information - store open channels

Reactive part (on payment request):

• Gather dynamic information - ask funds, fees, status

• Find path based on both

Proactive

Proactive: Neighbourhood

Neighbourhood

In certain radius node can very quickly gather information on
channels/opening closing, thus having up to date picture, but
it is not scalable to have radius too big

Node

Neighbours

• Each node propagates information on it’s channels
closing and opening in certain radius

• This allows each node to have up to date picture of all
open channels (with their total capacity) in certain radius.

Proactive

Neighbourhood

Fog of War

What to do if network becomes huge?

Node

Proactive: Beacons
Beacons

To enhance long range visibility node finds paths to distant
nodes (beacons) which can help to find route to receiver if

he is not in the neighbourhood

Receiver

Sender

Beacons
Beacons

• Each node finds paths to nodes whose addresses are
closest to the one’s (claiming them beacons)

• On reactive stage this allows to search for longer paths
iterating over known nodes in DHT like manner

Routing Table

Beacons

Node

Neighbourhood

Reactive

Reactive
When node E wants to send money to D:

1. E and D find path candidates on the graph of their
routing tables

2. If no candidates are found E requests tables from nodes
whose addresses are closest to D and so on…

3. When several candidates are found E collects dynamic
information on them

4. If the one is found E creates HTLC and sends money to D

Reactive
When node E wants to send money to D:

1. E and D find path candidates on the graph of their
routing tables

2. If no candidates are found E requests tables from nodes
whose addresses are closest to D and so on…

3. When several candidates are found E collects dynamic
information on them

4. If the one is found E creates HTLC and sends money to D

Finiding candidates
Once joint routing table is created one may find k paths
using approaches like breadth-first search

Disjoint paths

Initial graph Shortest path 1 Weights update Shortest path 2

Weights update Shortest path 3 Weights update Found paths

By adding vertex weights to network graph one may find
shortest paths that are most different from previous found

…

…

Reactive
When node E wants to send money to D:

1. E and D find path candidates on the graph of their
routing tables

2. If no candidates are found E requests tables from
nodes whose addresses are closest to D and so on…

3. When several candidates are found E collects dynamic
information on them

4. If the one is found E creates HTLC and sends money to D

Reactive
When node E wants to send money to D:

1. E and D find path candidates on the graph of their
routing tables

2. If no candidates are found E requests tables from nodes
whose addresses are closest to D and so on…

3. When several candidates are found E collects
dynamic information on them

4. If the one is found E creates HTLC and sends money to D

Dynamic data
• Found candidates are paths that potentially can

route the payment

• To tell if there is the path that we can use to route
the payment we need to gather dynamic data for
candidates (funds, fees)

• The simple solution - probing onion messages
that traverse through candidate paths and quickly
collect dynamic information

Dynamic data
But how do we know which candidates to check first? Need ranking.

• Distribution of funds in the channel - uniform if know nothing

• Probability that channel with capacity C would be able to route
the payment x is equal to

• Probability payment would make it through is

• After we get the probabilities we can start sending probes through
the candidates with highest chance of success

Reactive
When node E wants to send money to D:

1. E and D find path candidates on the graph of their
routing tables

2. If no candidates are found E requests tables from nodes
whose addresses are closest to D and so on…

3. When several candidates are found E collects dynamic
information on them

4. If the one is found E creates HTLC and sends money
to D

Implementations

Two implementations of LN with Flare (work in progress):

• https://github.com/LightningNetwork/lnd

• https://github.com/ACINQ/eclair

https://github.com/LightningNetwork/lnd
https://github.com/ACINQ/eclair

What the real topology of
LN would be ???

There is still no sensible topology and behavioural
model of network and we need it for better

experiments and fine tuning.

Thank you

Contact mail
lightning@bitfury.com

mailto:lightning@bitfury.com

