o] |

Erlc Lombrozo & Meltem Demlrors
Scaling Bltcom Phase 1

Our Goals Today

e Share our perspective on challenges in the bitcoin ecosystem
and how they evolved

e Offer constructive ideas to begin growing our ecosystem and
solicit input

e |Leave with some shared goals for our community

Share anonymous comments, ideas,

feedback at bit.ly/Scalingldeas

The Bitcoin Ecosystem is Fragmented

‘%B’tFury >"‘BTCC @ CiPHREX A NEKI ﬂ

fZ 001 BITMAIN :',\ ’:) Blockstream Kraken
ﬁ " & coinbase
o G bltcom 0 BitGo
ANDREESSEN i b t
HOROWITZ MEDIA . CorDesk i Pay
9 BltCO|ncore MIT DCI Stanfor dep @ . Bitcoin .
2+ Dy Foundation

Obitcoinun!imitec C COIN CENTER itcoin.com

/r/bltcom

Key Stakeholders

BUILD SCALE OPERATE

e Core developers and e Visionaries and e Miners
contributors influencers e Exchanges
e CTOs/ engineers e ProductUl/ UX e Bitcoin 2.0 companies
e Academics e Business Development e Industry collaboration
e Business people e Marketing and Sales projects / coalitions
e Product leads e PR/ Communications e Foundations and other
e Designers community groups

We need coordination among stakeholders

to keep bitcoin development moving forward

Challenges in the Bitcoin Today

Native to the bitcoin protocol and the dependencies within it -

Inherent Complexities i .
P features can't be solved for by other implementations

Limitations arising from the manner in which bitcoin has
A e R I ST developed over time and the techniques used - real issue is
maintaining compatibility and not breaking consensus

Method of development is challenging - hard to gain experience,

meaningful contribution requires extremely skilled developers,
and many nuances and complexities in dev process

Inadequate Methods &
Techniques

Re-creating incompatible or sub-par solutions to problems that
have already been solved, building different products to
implement the same services and features

Continuous Re-invention

and Re-discovery

A Quick Qutline

e 15 min| Eric - Contributing in Bitcoin - Perspectives and
Suggestions for Scalable Development

e 15 min | Meltem - Operating in Bitcoin - Connecting the Dots
in the Ecosystem

e 5 min | Review of Suggested Projects to Pursue

e 10 min| Q&A / Discussion

Contributing in Bitcoin

Scalable Development

First Dive into Bitcoin Development

https://en.bitcoin.it/wiki/Original_Bitcoin_client/API_calls_list

Original Bitcoin client/API calls list

Bitcoin API call list (as of version 0.8.0)

Note: up-to-date API reference can be found here &.

Contents [hide]

1 Common operations
1.1 Listing my bitcoin addresses
2 Full list
3 Error Codes
4 See Also
5 References

Common operations

Listing my bitcoin addresses

Listing the bitcoin addresses in your wallet is easily done via listreceivedbyaddress. It normally lists only addresses which already have received transactions,
however you can list all the addresses by setting the first argument to 0, and the second one to true.

Accounts are used to organize addresses.

Full list

https://en.bitcoin.it/wiki/Original_Bitcoin_client/API_calls_list

Required arguments are denoted inside < and > Optional arguments are inside [and].

Command

addmultisigaddress

addnode

backupwallet

createmultisig

createrawtransaction

decoderawtransaction

dumpprivkey
encryptwallet

getaccount

getaccountaddress

Parameters

<nrequired> <["key","key"]>> [account]

<node> <add/remove/onetry>

<destination>

<nrequired> <["key,"key"]>

[{"txid":txid,"vout":n},...]
{address:amount,...}

<hex string>

<bitcoinaddress>
<passphrase>

<bitcoinaddress>

<account>

Description

Add a nrequired-to-sign multisignature address to the wallet. Each key
is a bitcoin address or hex-encoded public key. If [account] is specified,

assign address to [account]. Returns a string containing the address.

version 0.8 Attempts add or remove <node> from the addnode list or
try a connection to <node> once.

Safely copies wallet.dat to destination, which can be a directory or a
path with filename.

Creates a multi-signature address and returns a json object
version 0.7 Creates a raw transaction spending given inputs.

version 0.7 Produces a human-readable JSON object for a raw
transaction.

Reveals the private key corresponding to <bitcoinaddress>
Encrypts the wallet with <passphrase>.
Returns the account associated with the given address.

Returns the current bitcoin address for receiving payments to this
account. If <account> does not exist, it will be created along with an
associated new address that will be returned.

Requires
unlocked
wallet?
(v0.4.0+)

s

Getting More Advanced

https://en.bitcoin.it/wiki/Protocol _documentation

Protocol documentation

This page describes the behavior of the reference client. The Bitcoin protocol is specified by the behavior of the reference client, not by this page. In particular, while this page is quite complete in describing the network protocol, it does not
attempt to list all of the rules for block or transaction validity.

Type names used in this documentation are from the C99 standard.

For protocol used in mining, see getblocktemplate.

Contents [hide]

1 Common standards

1.1 Hashes

1.2 Merkle Trees

1.3 Signatures

1.4 Transaction Verification

1.5 Addresses
2 Common structures

2.1 Message structure

2.2 Variable length integer

2.3 Variable length string

2.4 Network address

2.5 Inventory Vectors

2.6 Block Headers

2.7 Differential encoding

2.8 PrefilledTransaction

2.9 HeaderAndShortIDs

2.10 BlockTransactionsRequest

2.11 BlockTransactions

2.12 Short transaction ID
3 Message types

3.1 version

3.2 verack

3.3 addr

3.4 inv

3.5 getdata

3.6 notfound

3.7 getblocks

3.8 getheaders

391x

3.10 block

3.11 headers

3.12 getaddr

3.13 mempool

3.14 checkorder

3.15 submitorder

https://en.bitcoin.it/wiki/Protocol _documentation

Message types

version

When a node creates an outgoing connection, it will immediately advertise its version. The remote node will respond with its version. No further communication is possible until both peers have exchanged their version.

Payload:

Field Size | Description Data type Comments
4 version int32_t Identifies protocol version being used by the node

8 services uinté4_t |bitfield of features to be enabled for this connection

8 timestamp int64_t standard UNIX timestamp in seconds

26 addr_recv net_addr The network address of the node receiving this message

Fields below require version = 106

26 addr_from net_addr The network address of the node emitting this message

8 nonce uinté4_t |Node random nonce, randomly generated every time a version packet is sent. This nonce is used to detect connections to self.
? user_agent |var_str User Agent & (0x00 if string is O bytes long)

4 start_height |int32_t The last block received by the emitting node

Fields below require version = 70001

1 relay bool Whether the remote peer should announce relayed transactions or not, see BIP 0037 &

A "verack" packet shall be sent if the version packet was accepted.

The following services are currently assigned:

Value Name Description

1 NODE_NETWORK This node can be asked for full blocks instead of just headers.

0000 £9 be b4
0010 64 00 00
0020 00 00 00
0030 00 00 00
0040 00 00 00
0050 00 00 00
0060 3b 2e b3
0070 69 3a 30

Message Header:
F9 BE B4 D9
76 65 72 73 69
64 00 00 00
3B 64 8D 5A

Version message:

6F

6E

0o

00

00
00

69

00

00
00

3A

00

00
00

30

https://en.bitcoin.it/wiki/Protocol _documentation

00

00 00 00 00 00 00 Q0O FF FF 00 00 00 00 00 0O
00 00 00 00 00 00 Q0O FF FF 00 00 00 00 00 0O

2E 37 2E 32 2F

....version.....
(o (L0 o (RN

T

7++]...2./Satosh
1:0.7.2/.>..

Main network magic bytes
"version" command

Payload is 100 bytes long
payload checksum

60002 (protocol wversion 60002)

1 (NODE_NETWORK services)

Tue Dec 18 10:12:33 PST 2012

Recipient address info - see Network Address

Sender address info - see Network Address

Node ID

"/Satoshi:0.7.2/" sub-version string (string is 15 bytes long)
Last block sending node has is block #212672

Developmental Bottlenecks

Developmental Bottlenecks

O This repository Pull requests Issues Gist Q. +-
bitcoin / bitcoin @Watch~ 1,219 s Star 10,066 YFork 6,687
Code Issues 407 1 Pull requests 143 Projects 6 Pulse Graphs

Dynamically Loadable Multiple Wallet Support Complete!!! b

I§Yel LW CodeShark wants to merge 38 commits into bitcoin:master from CodeShark:multiwallet

(& Conversation 58 -O- Commits 38 Files changed 28 +1,407 -525 mmmm

CodeShark commented on Dec 23, 2012 Projects

None yet
bitcoind now supports loading more than one wallet at once.

Labels
A singleton object of type CWalletManager now exists. It handles dynamic loading/unloading and
synchronization of wallets and allows different parts of the application to access wallets by name. None yet
A new CWallet* parameter has been added to the RPC functions. Functions which do not use a wallet Milsateis

simply ignore it. In addition, a new field has been added to CRPCCommand that tells us whether or not

: No milestone
the function can be called on a wallet.

Wallet-specific information has been removed from RPC method getinfo. Instead, getinfo just reports Assignees
how many))) ;)) No one assigned
wallets are currently loaded. Detailed wallet info is now available via the listwallets method.

Four new RPC methods have been added: 13 participants

o listwallets
Returns an array containing wallet information.

Developmental Bottlenecks

<>

B sipa and 1 other commented on an outdated diff on Jan 6, 2013

@ sipa and 1 other commented on an outdated diff on Jan 6, 2013

) sipa and 1 other commented on an outdated diff on Jan 6, 2013

CodeShark added some commits on Jan 7, 2013

. Moved RPC type conversion for usewallet to RPCConvertValues

function.

B8 Fixed usewallet params.

. Added preprocessor directive for boost filesystem v2 vs v3.

=2 Show 2 comments

£z Show 3 comments

£z Show 3 comments

- Better encapsulation on WalletMap class, moved critical section

locks.. «

. Checking for CDB exceptions upon loading wallet.

Added unload methods for wallet db and call to unload in

~CWallet().

& CodeShark commented on the diff on Jan 10, 2013

src/makefile.unix

-1 boost_filesystem$(BOOST_LIB_SUFFIX) \

View full changes

-1 boost_program_options$(B0OOST_LIB_SUFFIX) \

-1 boost_thread$(BOOST_LIB_SUFFIX) \
35 + -1 boost_regex$(BOOST_LIB_SUFFIX) \

a CodeShark on Jan 10, 2013

This is what's causing BitcoinPullTester to fail. Could we add this library?

Diapolo on Jan 10, 2013

Projects

None yet

Labels

None yet

Milestone

No milestone

Assignees

No one assigned

13 participants

B EHOES

Notifications

«x Unsubscribe

You're receiving notifications
because you authored the thread.

") Allow edits from maintainers.

Learn more

Developmental Bottlenecks

U —
Projects
gavinandresen commented on Oct 21, 2013 Bitcoin member None yet
Rebase needed. Labels
None yet
Tranz5 commented on Nov 13, 2013 Milestone

No milestone
This is awesome work. | hope it makes it way to BTC soon. I've been playing with it for a bit now. Here

are the issues | am working through.

1) Export doesn't work. (Tried making BitCoinGui exportAction public and referencing it in Assignees
WalletView::gotoHistoryPage but that only gives me default wallet) Still working on different methods to No one assigned
fix this.

2) The RPC commands loadwallet and unloadwallet do not reflect in gui. | think the gui needs a connect 13 participants

to rpc commands.

3) When clicking on the transaction on the right side of the gui, the transaction button doesn't get
focus.

4) The gui can't create a new wallet. using loadwallet then unloadwallet rcp, then load button in gui
works, but..

SHOESSR
L %

Notifications

So far these are the only issues | have found. «4x Unsubscribe

Thanks again for the hard work. I'll share what | can when as | work through these changes. | am still You're receiving notifications
new and trying to catchup as quick as possible. Any hints are appreciated it. because you authored the thread.

i inil 1
Happy Bitcoining! Allow edits from maintainers.

Learn more

Tranz5 commented on Dec 1, 2013

| also found that sign message didn't work with other wallets.
| have found a solution to all of these.

| can do a pull request to this version, if this actually has a chance to be part of btc. | don't have time to

Developmental Bottlenecks

. = Projects
i: bananas2 commented on Mar 24, 2014 None yet
Is it already implemented? Labels
None yet
'
ﬁ laanwj commented on Mar 24, 2014 Bitcoin member
Milestone

No, the pull request was not kept up to date. | needs a lot of rebasing to apply to 0.9.x, which Gavin Nomilestons

already noted 5 months ago.
Assignees

i No one assigned
-ﬁ laanwj commented on Apr 3, 2014 Bitcoin member

13 participants

I'm going to close this. It has diverged too much from the current code base and no one seems to be
interested in rebasing it.

In case anyone ever wants to have a shot at implementing multi-wallet I'll refer to to these code
changes, as in principle they are good but they just arrived at the wrong time and were not kept in sync

long enough to be tested properly and merged. Notifications

«x Unsubscribe

@ # laanwj closed this on Apr 3, 2014 You're receiving notifications
because you authored the thread.

] # laanwj referenced this pull request on Apr 25, 2014 Allow edits from maintainers.
Multiple wallet #4093 Learn more

6coind commented on Dec 19, 2015

Noone can re-base this ? Amazing that this did not become the standard

Layered Protocols

Layered Protocols

Internet Protocol Layers

Applications

HTTP / FTP / IMAP / SMTP / etc...

TCP / UDP / etc...

IPv4 / IPv6 / etc...

Layered Protocols

Bitcoin Protocol Layers

Applications

Off-chain Protocols / APIs

P2P / Propagation / Relay

Consensus

Layered Protocols

BIP 123

Layered Protocols

BIP: 123

Layer: Process

Title: BIP Classification

Author: Eric Lombrozo <elombrozo@gmail.com>
Status: Draft

Type: Process

Created: 2015-08-26

Table of Contents

“ Abstract
" Motivation

- Specification
“ 1. Consensus Layer
" Soft Forks
"~ Hard Forks
“ 2. Peer Services Layer
“ 3. API/RPC Layer

4. Applications Layer

“ Classification of existing BIPs

Abstract

This document describes a classification scheme for BIPs.
BIPs are classified by system layers with lower numbered layers involving more intricate interoperability requirements.

The specification defines the layers and sets forth specific criteria for deciding to which layer a particular standards BIP
belongs.

Layered Protocols

4. Applications Layer

The applications layer specifies high level structures, abstractions, and conventions that allow different applications
to support similar features and share data.

Layered Protocols

3. API/RPC Layer

The API/RPC layer specifies higher level calls accessible to applications. Support for these BIPs is not required for
basic network interoperability but might be expected by some client applications.

There's room at this layer to allow for competing standards without breaking basic network interoperability.

Layered Protocols

2. Peer Services Layer

The peer services layer specifies how nodes find each other and propagate messages.

Only a subset of all specified peer services are required for basic node interoperability. Nodes can support further
optional extensions.

It is always possible to add new services without breaking compatibility with existing services, then gradually
deprecate older services. In this manner, the entire network can be upgraded without serious risks of service
disruption.

Layered Protocols

1. Consensus Layer

The consensus layer defines cryptographic commitment structures. Its purpose is ensuring that anyone can locally
evaluate whether a particular state and history is valid, providing settlement guarantees, and assuring eventual
convergence.

The consensus layer is not concerned with how messages are propagated on a network.

Disagreements over the consensus layer can result in network partitioning, or forks, where different nodes might end
up accepting different incompatible histories. We further subdivide consensus layer changes into soft forks and hard
forks.

Soft Forks

In a soft fork, some structures that were valid under the old rules are no longer valid under the new rules. Structures
that were invalid under the old rules continue to be invalid under the new rules.

Hard Forks

In a hard fork, structures that were invalid under the old rules become valid under the new rules.

Consensus Rule Changes

Satoshi’s Vision

satoshi
Founder
Sr. Member

Activity: 364

&

Re: Transactions and Scripts: DUP HASH160 ... EQUALVERIFY CHECKSIG o
June 17, 2010, 06:46:08 PM %

The nature of Bitcoin is such that once version 0.1 was released, the core design was set in stone for the rest of its lifetime. Because of that, I
wanted to design it to support every possible transaction type I could think of. The problem was, each thing required special support code and data
fields whether it was used or not, and only covered one special case at a time. It would have been an explosion of special cases. The solution was
script, which generalizes the problem so transacting parties can describe their transaction as a predicate that the node network evaluates. The nodes
only need to understand the transaction to the extent of evaluating whether the sender's conditions are met.

The script is actually a predicate. It's just an equation that evaluates to true or false. Predicate is a long and unfamiliar word so I called it script.

The receiver of a payment does a template match on the script. Currently, receivers only accept two templates: direct payment and bitcoin address.
Future versions can add templates for more transaction types and nodes running that version or higher will be able to receive them. All versions of
nodes in the network can verify and process any new transactions into blocks, even though they may not know how to read them.

The design supports a tremendous variety of possible transaction types that I designed years ago. Escrow transactions, bonded contracts, third party
arbitration, multi-party signature, etc. If Bitcoin catches on in a big way, these are things we'll want to explore in the future, but they all had to be
designed at the beginning to make sure they would be possible later.

I don't believe a second, compatible implementation of Bitcoin will ever be a good idea. So much of the design depends on all nodes getting exactly
identical results in lockstep that a second implementation would be a menace to the network. The MIT license is compatible with all other licenses
and commercial uses, so there is no need to rewrite it from a licensing standpoint.

Source: Bitcoin talk circa June 2010. https://bitcointalk.org/index.php?topic=195.msg1611#msg1611

https://bitcointalk.org/index.php?topic=195.msg1611#msg1611

satoshi
Founder
Sr. Member

Activity: 364

&

%, Re: Transactions and Scripts: DUP HASH160 ... EQUALVERIFY CHECKSIG

&)

" June 18, 2010, 04:17:14 PM i

A second version would be a massive development and maintenance hassle for me. It's hard enough maintaining backward compatibility
while upgrading the network without a second version locking things in. If the second version screwed up, the user experience would reflect
badly on both, although it would at least reinforce to users the importance of staying with the official version. If someone was getting ready
to fork a second version, I would have to air a lot of disclaimers about the risks of using a minority version. This is a design where the
majority version wins if there's any disagreement, and that can be pretty ugly for the minority version and I'd rather not go into it, and I don't
have to as long as there's only one version.

I know, most developers don't like their software forked, but I have real technical reasons in this case.

Quote from: gavinandresen on June 17, 2010, 07:58:14 PM

I admire the flexibility of the scripts-in-a-transaction scheme, but my evil little mind immediately starts to think of ways I might abuse it. I could encode all sorts of
interesting information in the TxOut script, and if non-hacked clients validated-and-then-ignored those transactions it would be a useful covert broadcast
communication channel.

That's a cool feature until it gets popular and somebody decides it would be fun to flood the payment network with millions of transactions to transfer the latest
Lady Gaga video to all their friends...

That's one of the reasons for transaction fees. There are other things we can do if necessary.

Quote from: laszlo on June 17, 2010, 06:50:31 PM

How long have you been working on this design Satoshi? It seems very well thought out, not the kind of thing you just sit down and code up without doing a lot of
brainstorming and discussion on it first. Everyone has the obvious questions looking for holes in it but it is holding up well @

Since 2007. At some point I became convinced there was a way to do this without any trust required at all and couldn't resist to keep
thinking about it. Much more of the work was designing than coding.

Fortunately, so far all the issues raised have been things I previously considered and planned for.

Source: Bitcoin talk circa June 2010. https://bitcointalk.org/index.php?topic=195.msg1617#msg1617

https://bitcointalk.org/index.php?topic=195.msg1617#msg1617

Hard Forks: convergence not guaranteed

Valid only to new nodes

Valid to old nodes

Blocks that used to be invalid become valid
(not enforceable by miners)

Soft Forks: convergence guaranteed

Valid to all nodes

Valid only to old nodes

Blocks that used to be valid become invalid
(de facto enforceable by miners)

Bootstrapping a Global Network

Key Issues with Building Bitcoin

Key Issues with Building Bitcoin

e Developmental Bottlenecks

Key Issues with Building Bitcoin

e Developmental Bottlenecks
e Modularization & Layers

Key Issues with Building Bitcoin

e Developmental Bottlenecks
e Modularization & Layers
e Consensus Rule Changes

Key Issues with Building Bitcoin

Developmental Bottlenecks
Modularization & Layers
Consensus Rule Changes
Bootstrapping a Global Network

Node Architecture

Peer Discovery

Connection Manager

Blocks

Validation Engine

Headers

Bitcoin Core

h

Storage Engine

Blocks

Peer Discovery

Commands & Events

Connection Manager i ‘ DB Interface

Validation Engine Storage Engine

Bitcoin Core

Headers Blocks Coins

Blockchain Database

Mlnlng_ o

[|

Networking

Peer Discovery
Commands & Events

Connection Manager DB Interface

Operating in Bitcoin
Reducing entropy

Bitcoin Today

Slow adoption
in other
communities or
ecosystems

Bitcoin companies selling

to one another

Early adopters and
speculators

VC and institutional
investment

Entrepreneurs
Opportunists
Intellectually
curious people

Who is Bitcoin for?

2.5% 13.5%

7

/

34%

34%

16%

\

Innovators Early Adopters Early Majority

Late Majority

Laggards

Stakeholders in Bitcoin Today

Ability to Influence Level of Interest

Bitcoin Core / Dev

Miners

Industry / Exchanges

Industry / Wallets & Secuity

Corporates

Academics

Policymakers

HOLDERS / observers

General Public

Why it Matters

Penetration of
Target Market

Target market
% adoption

t = time

Why it Matters

~100% adoption

OPERATE

Target Market 1

Target market
% adoption

2010 2015 ? t =time

Why it Matters

Target Market 2

Target Market 1&2
% adoption

Target Market 1

New technology
emerges

t = time

Stakeholders in Bitcoin Tomorrow

Bitcoin Core / Dev

Miners

Industry / Exchanges
Industry / Wallets & Secuity
Corporates

Academics

Policymakers

HOLDERS / observers

General Public

Ability to Influence

Level of Interest

Why it Matters

Total Population
% adoption

Bitcoin technology is going to continue
to change and evolve -
So how do we keep technology
development and “adoption” (usage)
connected?

t = time

The Bitcoin Ecosystem is Fragmented

‘%B’tFury >"‘BTCC @ CiPHREX A NEKI ﬂ

fzp()ol BITMAIN : :',\ :) Blockstream KraKen.
m mpionr | &g coinbase
= € bltcom 9 BitGo
ANDREESSEN i b it
O Eenia ! CoinDesk ipay
9 B|tcomCore MIT DCI . oo | 5§ B0
™. Foundation

Obitcoinun!imitec C COIN CENTER itcoin.com

/r/bltcom

Are we Our Own Worst Enemy?

Bitcoin is inherently social software - how do groups work?
1. Paradox of Groups - “This is good and must be protected”
2. External enemies as a unifying cause - group cohesion in common cause

3. Religious veneration - nomination and worship of an icon

e We built the system, assumed certain user behaviors

e Users came on and exhibit different behaviors

e People running the system realize technological and social issues can't in fact be uncoupled
e But the conversational context of bitcoin development doesn't scale

So how could bitcoin scale beyond the “group within the group”?

Beyond “the group within the group”

Exposure to or awareness of - knowledge is typically distributed

Knowledge through both formal and informal channels

The way people view bitcoin has been fairly negative, primarily due to
the lack of knowledge and adoption

The decision about whether or not to adopt bitcoin - here features,
design, and user experience are key factors

Implementation The ability to actually “implement” bitcoin and build bitcoin into other
systems or products

Comparing and evaluating bitcoin against other technologies and
determining if it is actually an elegant or efficient solution

Confirmation

Attitudes

e Misunderstanding of actual features of bitcoin - misinformation
e Limited body of knowledge around non-technical areas of bitcoin

e Datasets to enable economic modeling / impact assessment for bitcoin adoption
difficult to find, limited data available

e Contributing to bitcoin knowledge isn't required to participate

Adoption

e Feature set of bitcoin as implemented today limits use cases

e Bitcoin core development efforts working to resolve these challenges but limited
resources and many dependencies

e Limited feedback loops on feature set

Implementation

e Implementing bitcoin or building with bitcoin is really difficult

e Hard to find talent who can actually build because implementing requires you to “get
under the hood”

e Difficulty understanding how components of bitcoin infrastructure interact with one
another and what it means for building bitcoin applications

What Next?

Community Project Ideas

Project Ideas

Bitcoin Core

1. Separate dependencies like consensus, database, networking, etc and de-couple into separate units
2. Design interfaces to decouple them into separate units
3. Refactor / reimplement units
Bitcoin Applications
4. Expanding research and body of knowledge around non-technical bitcoin issues and opportunities

5. Semi-annual infrastructure workshops for exchanges, wallets, etc. to manage technical projects
more broadly across community

6. Build reference architecture for how bitcoin fits into enterprise / app infrastructure to ease
“adoption” pains

Share anonymous comments, ideas, feedback at bit.ly/Scalingldeas

Technical Challenges

e Points

Process and Workflow

e Points

Suggestions

e Points

Validation Engine (libconsensus)

Bitcoin Core Validation Logic

Commit: 2a0836f6d5e7c1d7e97bedb0e0ea33dcaf981f77

main.cpp:3732 ProcessNewBlock
L main.cpp:3665 AcceptBlock
L main.cpp:3617 AcceptBlockHeader

L main.cpp:3359 CheckBlockHeader

| L pow.cpp:77 CheckProofOfWork

|

L Check that we have previous block and it is valid
L main.cpp:3431 CheckindexAgainstCheckpoint

L main.cpp:3510 ContextualCheckBlockHeader

| L Check nBits, timestamp, and block version

I
L main.cpp:3188 AddToBIlockindex

Validation Engine

L main.cpp:3368 CheckBlock
L main.cpp:3359 CheckBlockHeader (again)

L pow.cpp:77 CheckProofOf\Work

L Check merkle root and that merkle tree is not mutated
L Check size limits

L Check first and only first transaction is coinbase

L FOREACH transaction

L main.cpp:1046 CheckTransaction
L Check vin is not empty
L Check vout is not empty
L Check tx size limit without witness
L Check for negative or overflow output values
L Check for duplicate inputs
L IF is coinbase?
L THEN: Check coinbase script length
L ELSE: Check that input prevouts are not null

